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1. Introduction

The aim of this paper is to extend classical results in Complex Analysis to the
general setting of elliptic operators. Clearly, this idea goes back to the mathemati-
cians of the XIXth century, who developed a parallel between analytic functions of
one variable and harmonic functions in planar domains. Nowadays, Hörmander�s
book on several complex variables [5] demonstrates the importance of @�techniques
in Complex Analysis and thus supports the point of view that Analysis of di¤er-
ential operators represents the right way for extending most classical results. See
also [6] and [11].
Our investigation here is restricted to the problem of extending the classical

results due to K. Weierstrass, G. Vitali, W. F. Osgood et al. on C1�convergence
of sequences of analytic functions.
Further consequences to Bergman Space Theory will be presented elsewhere.

2. Preliminaries on elliptic operators

Throughout this section 
 will denote a bounded open subset of RN and C1(
; r)
will denote the Fréchet space C1(
;Cr); endowed with the family of seminorms

jjujjKn =
X
j�j �n

1

�!
sup
x2K

jD�u(x)j ;

where n runs over N and K runs over the compact subsets of 
:
We shall consider linear elliptic operators P : C1(
; r)! C1(
; s) of order m,

i.e. operators of the form

(Pu)(x) =
X

j�j �m

a�(x)(D
�u)(x)

whose leading symbols

�P (x; �) =
X

j�j=m

a�(x)�
� : Cr ! Cs

are injective, whenever x 2 
 and � 2 Rr n f0g ; all coe¢ cients are supposed to be
C1:
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The simplest examples of linear elliptic operators are

dp
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; @ =
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NX
k=1

@2
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; �p

and their perturbations by lower order terms.
Much of the theory of elliptic operators depends upon the powerful methods of

Functional Analysis and in this connection an important role is played by Sobolev
spaces.
For m 2 N; the Sobolev space Hm(
; r) is the space of all functions u 2

L2 (
; r) = L2(
;Cr); whose distributional derivatives of order� m are in L2 (
; r) :
This is a Hilbert space for the norm

jjujjHm(
;r) =

0@ X
j�j � k

Z



jD�u(x)j2 dx

1A1=2

:

Notice that Hk(
; r) can be described alternatively as the completion ofn
u 2 C1(
; r); jjujjHm(
;r) <1

o
with respect to jj�jjHk(
;r) :

According to Sobolev embedding theorem [9], if k > N
2 + j; then for every

compact subset K of 
 there exists a constant C1 > 0 such that

jjujjKj � C1 jjujjHk(
;r)

whenever u 2 C1(
; r): This theorem shows that every u 2 Hm(
; r) is a. e. equal
to a function of class Cm�[N=2]�1:
A basic result on linear elliptic operators is the Friedrichs�inequality [4]: If P

is as above, then for every relatively compact open subset 
0 of 
 there exists a
constant C2 > 0 such that

jjujjHm+k(
0 ;r) � C2
�
jjPujjHk(
;r) + jjujjH0(
;r)

�
for every k 2 N and every u 2 C1(
; r) for which the right hand side is �nite.
Elliptic operators of the type considered above have nice regularity properties.

Particularly they are hypoelliptic, i.e. if u 2 L2loc(
; r) and Pu = 0 (in the sense of
distributions), then u is a.e. equal to a C1�function.

3. C1� convergence of sequences of P� analytic functions

As above, P : C1(
; r) ! C1(
; s) will denote a linear elliptic operator of
order m. Attached to it will be the vector space

A(P ) = Ker P
of the so called P � analytic functions. The usual analytic functions correspond
to the case where P = @. For P = dp

dxp ; A(P ) consists of all polynomials of degree
� p; while for P = � we retrieve the case of harmonic functions.
The convergence of sequences of P�analytic functions has some special features,

noticed in particular cases by a number of mathematicians such as K. Weierstrass,
G. Vitali, H. Harnack et al. A sample of the results in this area is Weierstrass�
theorem, which asserts that uniform convergence on compacta preserves analyticity.
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In order to develop a unifying approach in the framework of P�analyticity, we
have to make the following basic remark, which combines Friedrichs�inequality and
Sobolev embedding theorem:

Lemma 3.1. Let (un)n be a sequence of elements of C1(
; r) such that:
i) (Pun)n is a converging sequence in C1(
; s);
ii) lim

j; k!1

R
K
juk � uj j2 dx = 0

for every compact subset K of 
:
Then (un)n is a converging sequence in C1(
; r):

Lemma 3.1 yields a number of criteria of C1� convergence, which provide them-
selves very useful in concrete applications:

Corollary 3.2. (Vitali�s Criterion of C1 � convergence). Suppose that (un)n is a
sequence of P�analytic functions such that:
i) (un)n is pointwise convergent to a function u : 
! Cr;
ii) (un)n is uniformly bounded on each compact subset of 
:
Then u is P�analytic and un ! u in C1(
; r):

Proof. Use the theorem of Lebesgue on dominated convergence. �
Corollary 3.3. (Weierstrass�Criterion of C1 � convergence). If (un)n is a se-
quence of P�analytic functions and un ! u uniformly on each compact subset of

; then u is P�analytic and un ! u in C1(
; r):

The discussion above shows that A(P ) constitutes a Fréchet space (and also a
closed subspace of C1(
; r)) when endowed with the family of seminorms

jjujjK = sup
x2K

ju(x)j

where K runs over the compact subsets of 
:

Theorem 3.4. (Stieltjes-Vitali Criterion of Compactness). Every sequence of P�
analytic functions which is bounded on compacta contains a converging subsequence.

Proof. First notice that 
 can be represented as the union of an increasing sequence

of compact subsets e.g., 
 =
1S
n=1


n where


n = fx 2 
; jxj � n and dist (x; @
) � 1=ng
for each n 2 N?:
By the Sobolev embedding theorem, we get uniform estimates for the derivatives

of the un�s on each subset 
n: In particular, the functions un are equicontinuous.
By the Arzela-Ascoli theorem we can choose a uniformly converging subsequence
on each 
n and using a diagonal argument we obtain a subsequence converging
uniformly an each compact subset of 
:
To end the proof it remains to apply to that subsequence the result of Corollary

3.3 above. �
As a consequence of Theorem 3.4 we obtain that condition i) in Vitali�s criterion

of C1�convergence can be weakned as:
i0) (un(x))n is convergent for x in a dense subset of 
:
How far is pointwise convergence from C1�convergence in the case of P�analytic

functions? The answer is given by the following theorem, which extends a result
due to W. F. Osgood [7]:
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Theorem 3.5. Let (un)n be a sequence of P�analytic functions which is pointwise
converging to a function u : 
! Cr: Then u is P�analytic in a dense open subset

1 � 
 and convergence is uniform on compact subsets of 
1:

Proof. Let K be an arbitrary closed ball included in 
. Then K =
1S
n=1

Kn; where

the Kn�s are closed subsets de�ned as

Kn = fx 2 K : juk(x)j � n for every kg :

By the Baire category theorem some Km must have non-empty interior. For
this m the sequence (un)n is uniformly bounded on IntKm; hence by Corollary 3.2
above it converges uniformly on compact subsets of IntKm: Thus u is P�analytic
on IntKm: Since the argument can be applied to any closed ball, it follows that
u is P�analytic on a dense open subset 
1 � 
: The fact that the convergence is
uniform on compacta contained in 
1 is standard and we omit the details. �
A natural question arising in connection with Theorem 3.4 is how thin can the

subset 
1 be? One can prove easily that for each open subset 
 of RN and each
" > 0 there must exist a dense open subset 
" � 
 whose Lebesgue measure is < ":
The problem is how to �t the convergence aspects as in Theorem 3.4.
The following example could be useful to settle that problem. Let � 2 (0; 1=2):

From the closed unit square K0 = [0; 1]� [0; 1] delete [0; 1]�(�; 1� �)[(�; 1� �)�
[0; 1] ; thus leaving a set K1 of 4 closed squares. Continue in a similar manner so
that at the nth stage we are left with a set Kn of 4n closed squares, whose centers
we denote zn;k (k = 1; :::; 4n) : Then K1 =

T
nKn is a totally disconnected set, of

planar Lebesgue measure zero. Letting

f(z) = lim
n!1

1

4n

4nX
k=1

1

z � zn;k

we obtain a function continuous on K0; which has no analytic continuation o¤
K0 nK1:
Notice that the Hausdor¤ dimension of the exceptional set K1 is � log 4= log �;

a quantity which goes to 2 as �! 1=2:
The example above shows that the implication

u = continuous & P (u) = 0 a.e. ) P (u) = 0 everywhere

fails even for P = @: However, for P = @ one can prove the following result on
removable singularities:

Theorem 3.6. (A. S. Besicovitch [1]) : If 
 is an open subset of C and u : 
! C
is a continuous function such that @u = 0 except on a thin subset, then @u = 0
everywhere i.e., u is analytic.

Recall that a subset of RN is called thin if it has ���nite (N � 1)�dimensional
Hausdor¤ measure.

Conjecture 3.7. Theorem 3.6 extends to all elliptic operators.

Acknowledgements. The work in this paper was partially supported by C.N.C.S.U.
Grant 10/1998.
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